Too Much Noise may Affect Our Brain Development

Noise damages our ears is a well-known fact, but did you know that it also may pose a risk to your head? A recent study claims that it can affect our brain development.
Using cutting-edge imaging technology, University of California, Irvine biologists have determined that uncontrolled fluctuations, known as “noise,” in the concentration of the vitamin A derivative Retinoic acid (RA) can lead to disruptions in brain organization during development.
‘Noise reduction within cells is critical for the proper response to the Retinoic acid gradient and normal organization of the brain.’
Identifying how a cell responds to a signal made by another cell, despite the level of noise present, may improve our understanding of developmental disorders. During development, RA is an important secreted molecule that aids in the proper organization of the brain.
The cellular response to RA depends upon its concentration, which is determined by its production, movement through tissue and interactions with many proteins within the cell. During normal development, cells can filter the “noise” in RA levels and establish appropriate brain organization.
Researcher Thomas F. Schilling and lead author Julian Sosnik wanted to measure the fluctuations in RA and determine how cells respond to the proper amount despite the presence of constant noise. The team used fluorescence lifetime imaging to exploit the auto-fluorescent nature of RA and measure its distribution across the developing zebrafish embryo.
They found that RA forms a gradient in the embryo, with a lower concentration at the head. They also observed that a large amount of noise exists within the RA gradient. They identified one protein within developing cells that interacts with RA to help reduce the noise.
When this protein was altered, cells could no longer control the level of noise within the RA gradient, which led to disruptions in brain organization. With this, the researchers concluded that noise reduction within cells is critical for the proper response to the RA gradient and normal organization of the brain. The study got published online at eLife.
Source: ANI